Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
biorxiv; 2024.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2024.04.03.587929

RESUMEN

The variable etiology of persistent breathlessness after COVID-19 have confounded efforts to decipher the immunopathology of lung sequelae. Here, we analyzed hundreds of cellular and molecular features in the context of discrete pulmonary phenotypes to define the systemic immune landscape of post-COVID lung disease. Cluster analysis of lung physiology measures highlighted two phenotypes of restrictive lung disease that differed by their impaired diffusion and severity of fibrosis. Machine learning revealed marked CCR5+CD95+ CD8+ T-cell perturbations in mild-to-moderate lung disease, but attenuated T-cell responses hallmarked by elevated CXCL13 in more severe disease. Distinct sets of cells, mediators, and autoantibodies distinguished each restrictive phenotype, and differed from those of patients without significant lung involvement. These differences were reflected in divergent T-cell-based type 1 networks according to severity of lung disease. Our findings, which provide an immunological basis for active lung injury versus advanced disease after COVID-19, might offer new targets for treatment.


Asunto(s)
Fibrosis , Enfermedades Pulmonares , COVID-19
2.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.04.19.047274

RESUMEN

ABSTRACT IL-1β has emerged as a key mediator of the cytokine storm linked to high morbidity and mortality from COVID-19 and blockade of the IL-1 receptor (IL-1R) with Anakinra has entered clinical trials in COVID-19 subjects. Yet, knowledge of the specific immune cell subsets targeted by IL-1β and IL-1β-induced signaling pathways in humans is limited. Utilizing mass cytometry (CyTOF) of human peripheral blood mononuclear cells, we identified effector memory CD4 T cells and CD4 − CD8 low/- CD161 + T cells as the circulating immune subtypes with the greatest expression of p-NF-κB in response to IL-1β stimulation. Notably, CCR6 distinctly identified T cells most responsive to IL-1β. Other subsets including CD11c myeloid dendritic cells (mDCs), classical monocytes (CM), two subsets of natural killer cells (CD16 − CD56 bright CD161 − and CD16 − CD56 dim CD161 + ) and a population of lineage − (Lin-) cells expressing CD161 and CD25 also showed IL-1β-induced expression of p-NF-kB. The IL-1R antagonist, Anakinra significantly inhibited IL-1β-induced p-NF-kB in the CCR6 + T cells and CD11c mDCs with a trending inhibition in CD14 monocytes and Lin − CD161 + CD25 + cells. IL-1β also induced a rapid but much less robust increase in p-p38 expression as compared to p-NF-kB in the majority of these same immune cell subsets. Prolonged IL-1β stimulation greatly increased p-STAT3 and to a much lesser extent p-STAT1 and p-STAT5 in T cell subsets, monocytes, DCs and the Lin − CD161 + CD25 + cells suggesting IL-1β-induced production of downstream STAT-activating cytokines, consistent with its role in cytokine storm. Interindividual heterogeneity and inhibition of this activation by Anakinra raises the intriguing possibility that assays to measure IL-1β-induced p-NF-kB in CCR6 + T cell subtypes could identify those at higher risk of cytokine storm and those most likely to benefit from Anakinra therapy.


Asunto(s)
Leucemia Mieloide , COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA